dbt Classes
dbt has a number of classes it uses to represent objects in a data warehouseA data warehouse is a data management system used for data storage and computing that allows for analytics activities such as transforming and sharing data., parts of a dbt project, and the results of a command.
These classes are often useful when building advanced dbt models and macros.
Relation
The Relation
object is used to interpolate schema and tableIn simplest terms, a table is the direct storage of data in rows and columns. Think excel sheet with raw values in each of the cells. names into SQL code with appropriate quoting. This object should always be used instead of interpolating values with {{ schema }}.{{ table }}
directly. Quoting of the Relation object can be configured using the quoting
config.
Creating relations
A Relation
can be created by calling the create
class method on the Relation
class.
class Relation:
def create(database=None, schema=None, identifier=None,
type=None):
"""
database (optional): The name of the database for this relation
schema (optional): The name of the schema (or dataset, if on BigQuery) for this relation
identifier (optional): The name of the identifier for this relation
type (optional): Metadata about this relation, eg: "table", "view", "cte"
"""
Using relations
In addition to api.Relation.create
, dbt returns a Relation when you use ref
, source
or this
.
{% set relation = api.Relation.create(schema='snowplow', identifier='events') %}
-- Return the `database` for this relation
{{ relation.database }}
-- Return the `schema` (or dataset) for this relation
{{ relation.schema }}
-- Return the `identifier` for this relation
{{ relation.identifier }}
-- Return relation name without the database
{{ relation.include(database=false) }}
-- Return true if the relation is a table
{{ relation.is_table }}
-- Return true if the relation is a view
{{ relation.is_view }}
-- Return true if the relation is a cte
{{ relation.is_cte }}
Column
The Column
object is used to encode information about a column in a relation.
class Column(object):
def __init__(self, column, dtype, char_size=None, numeric_size=None):
"""
column: The name of the column represented by this object
dtype: The data type of the column (database-specific)
char_size: If dtype is a variable width character type, the size of the column, or else None
numeric_size: If dtype is a fixed precision numeric type, the size of the column, or else None
"""
# Example usage:
col = Column('name', 'varchar', 255)
col.is_string() # True
col.is_numeric() # False
col.is_number() # False
col.is_integer() # False
col.is_float() # False
col.string_type() # character varying(255)
col.numeric_type('numeric', 12, 4) # numeric(12,4)
Column API
Properties
- char_size: Returns the maximum size for character varying columns
- column: Returns the name of the column
- data_type: Returns the data type of the column (with size/precision/scale included)
- dtype: Returns the data type of the column (without any size/precision/scale included)
- name: Returns the name of the column (identical to
column
, provided as an alias). - numeric_precision: Returns the maximum precision for fixed decimal columns
- numeric_scale: Returns the maximum scale for fixed decimal columns
- quoted: Returns the name of the column wrapped in quotes
Instance methods
- is_string(): Returns True if the column is a String type (eg. text, varchar), else False
- is_numeric(): Returns True if the column is a fixed-precision Numeric type (eg.
numeric
), else False - is_number(): Returns True if the column is a number-y type (eg.
numeric
,int
,float
, or similar), else False - is_integer(): Returns True if the column is an integer (eg.
int
,bigint
,serial
or similar), else False - is_float(): Returns True if the column is a float type (eg.
float
,float64
, or similar), else False - string_size(): Returns the width of the column if it is a string type, else, an exception is raised
Static methods
- string_type(size): Returns a database-useable representation of the string type (eg.
character varying(255)
) - numeric_type(dtype, precision, scale): Returns a database-useable representation of the numeric type (eg.
numeric(12, 4)
)
Using columns
-- String column
{%- set string_column = api.Column('name', 'varchar', char_size=255) %}
-- Return true if the column is a string
{{ string_column.is_string() }}
-- Return true if the column is a numeric
{{ string_column.is_numeric() }}
-- Return true if the column is a number
{{ string_column.is_number() }}
-- Return true if the column is an integer
{{ string_column.is_integer() }}
-- Return true if the column is a float
{{ string_column.is_float() }}
-- Numeric column
{%- set numeric_column = api.Column('distance_traveled', 'numeric', numeric_precision=12, numeric_scale=4) %}
-- Return true if the column is a string
{{ numeric_column.is_string() }}
-- Return true if the column is a numeric
{{ numeric_column.is_numeric() }}
-- Return true if the column is a number
{{ numeric_column.is_number() }}
-- Return true if the column is an integer
{{ numeric_column.is_integer() }}
-- Return true if the column is a float
{{ numeric_column.is_float() }}
-- Static methods
-- Return the string data type for this database adapter with a given size
{{ api.Column.string_type(255) }}
-- Return the numeric data type for this database adapter with a given precision and scale
{{ api.Column.numeric_type('numeric', 12, 4) }}
BigQuery columns
The Column
type is overridden as a BigQueryColumn
in BigQuery dbt projects. This object works the same as the Column
type described above, with the exception of extra properties and methods:
Properties
- fields: Returns the list of subfields contained within a field (if the column is a STRUCT)
- mode: Returns the "mode" of the column, eg.
REPEATED
Instance methods
flatten(): Return a flattened list of BigQueryColumns
in which subfields are expanded into their own columns. For example, this nested field:
[{"hits": {"pageviews": 1, "bounces": 0}}]
will be expanded to:
[{"hits.pageviews": 1, "hits.bounces": 0}]
Result objects
The execution of a resource in dbt generates a Result
object. This object contains information about the executed node, timing, status, and metadata returned by the adapter. At the end of an invocation, dbt records these objects in run_results.json
.
node
: Full object representation of the dbt resource (model, seed, snapshot, test) executed, including itsunique_id
status
: dbt's interpretation of runtime success, failure, or errorthread_id
: Which thread executed this node? E.g.Thread-1
execution_time
: Total time spent executing this node, measured in seconds.timing
: Array that breaks down execution time into steps (oftencompile
+execute
)message
: How dbt will report this result on the CLI, based on information returned from the database
adapter_response
: Dictionary of metadata returned from the database, which varies by adapter. For example, successcode
, number ofrows_affected
, totalbytes_processed
, and so on. Not applicable for tests.rows_affected
returns the number of rows modified by the last statement executed. In cases where the query's row count can't be determined or isn't applicable (such as when creating a viewA view (as opposed to a table) is a defined passthrough SQL query that can be run against a database (or data warehouse).), a standard value of-1
is returned forrowcount
.